Generated by DocFX

Class Activation

Represents the activation function that is applied to a neural layer.

Inheritance
Object
Activation
IdentityActivation
ReluActivation
SoftmaxActivation
TanhActivation
Inherited Members
Object.Equals(Object)
Object.Equals(Object, Object)
Object.GetHashCode()
Object.GetType()
Object.MemberwiseClone()
Object.ReferenceEquals(Object, Object)
Object.ToString()
Namespace: NeuralNetLearning.Maths.Activations
Assembly: NeuralNet.dll
Syntax
public abstract class Activation

Methods

Apply(Vector<Double>)

Returns the resulting MathNet.Numerics.LinearAlgebra.Vector<T> on applying the activation function to input.

Declaration
public abstract Vector<double> Apply(Vector<double> input)
Parameters
Type Name Description
MathNet.Numerics.LinearAlgebra.Vector<Double> input
Returns
Type Description
MathNet.Numerics.LinearAlgebra.Vector<Double>

Derivative(Vector<Double>)

Returns the matrix of derivatives of the activation function evaluated with input.

The [r, c] entry is the derivative of the rth component of the activation function, with respect to the cth component of the input.

Declaration
public abstract Matrix<double> Derivative(Vector<double> input)
Parameters
Type Name Description
MathNet.Numerics.LinearAlgebra.Vector<Double> input
Returns
Type Description
MathNet.Numerics.LinearAlgebra.Matrix<Double>